SPICE Model Identification Technique of a Cheap Thermoelectric Cell Applied to DC/DC Design with MPPT Algorithm for Low-Cost, Low-Power Energy Harvesting

Author:

Leoni ,Pantoli

Abstract

In this work, an identification technique of a simple, measurements-based SPICE (Simulation Program with Integrated Circuit Emphasis) model is presented for small low-cost Peltier cells used in thermoelectric generator (TEG) mode for low-temperature differences. The collection of electric energy from thermal sources is an alternative solution of great interests to the problem of energy supply for low-power portable devices. However, materials with thermoelectric characteristics specifically designed for this purpose are generally expensive and therefore often not usable for low cost and low power applications. For these reasons, in this paper, we studied the possibility of exploiting small Peltier cells in TEG mode and a method to maximize the efficiency of these objects in energy conversion and storage since they are economical, easy to use, and available with different characteristics on the market. The identification of an accurate model is a key aspect for the design of the DC/DC converter, in order to guarantee maximum efficiency. For this purpose, the SPICE model has been validated and used in a design example of a DC/DC converter with maximum power point tracking (MPPT) algorithm with fractional open-circuit voltage. The results showed that it is possible to obtain a maximum power of 309 µW with a Peltier cell 2 × 2 cm at a ΔT of 16 °C and the designed SPICE DC/DC converter performance proved the improvement and optimization value given by the TEG model identification.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3