Numerical Analysis on Enhancing Spray Performance of SCR Mixer Device and Heat Transfer Performance Based on Field Synergy Principle

Author:

Ye JiedongORCID,Lv Junshuai,Tan Dongli,Ai Zhiqiang,Feng Zhiqiang

Abstract

The NH3 uniformity and conversion rate produced by the urea–water solution spray system is an essential factor affecting de-NOx efficiency. In this work, a three-dimensional simulation model was developed with the CFD software and was employed to investigate the effects of two typical injection methods (wall injection and center injection) and three distribution strategies (pre-mixer, post-mixer, pre-mixer, and post-mixer) of two typical mixers on the urea conversion rate and uniformity. The field synergy principle was employed to analyze the heat transfer of different mixer flow fields. The results show that the single mixer has instability in optimizing different injection positions due to different injection methods and injection positions. The dual-mixer is stable in the optimization of the flow field under different conditions. The conclusion of the field synergy theory of the single mixer accords with the simulation result. The Fc of the dual-mixer cases is low, but the NH3 conversion and uniformity index rate are also improved due to the increase in the residence time of UWS.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3