Tribological Properties of Groove-Textured Ti-6Al-4V Alloys with Solid Lubricants in Dry Sliding against GCr15 Steel Balls

Author:

Wu Ze1,Tan Xiuli1,Li Guochao2ORCID,Xing Youqiang1ORCID

Affiliation:

1. School of Mechanical Engineering, Southeast University, Nanjing 211189, China

2. School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China

Abstract

A nanosecond laser is used to fabricate groove-patterned textures on the upper surface of Ti-6Al-4V alloys, and then molybdic sulfide solid lubricants are filled into the grooves. The treated titanium alloy is subjected to friction and wear tests. The tribological performances of Ti-6Al-4V alloys are evaluated, and the wearing mechanism is analyzed. The combination of solid lubricants and surface texturing can effectively reduce the frictional coefficient and reduce the adhesion of Ti-6Al-4V materials on the steel balls for friction. The main wearing mechanism is the adhesive wear of the Ti-6Al-4V alloy and the adhesion of Ti-6Al-4V alloy materials on the surface of the steel balls. During the friction process, solid lubricants are squeezed from the grooves and coated at the friction interface to form a solid lubrication layer. This is the important reason why the combination of surface texturing and solid lubricants can improve the friction properties of titanium alloys effectively. The combination of solid lubricants and laser surface texturing provides an effective alternative way to improve the tribological properties of titanium alloy materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province in China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3