Stringency of Water Conservation Determines Drinking Water Quality Trade-Offs: Lessons Learned from a Full-Scale Water Distribution System

Author:

Hatam Fatemeh,Ebacher Gabrielle,Prévost Michèle

Abstract

Demand variations over time affect the hydraulic and water quality behavior of water distribution systems. Therefore, it is important to assess the network performance under various future water demand scenarios to plan effectively for demand management strategies, considering the network’s topology, volume, and operational conditions. The performance of a full-scale water distribution system is evaluated by means of hydraulic and water quality simulations under different hypothetical demand management strategies. Residential and nonresidential consumptions are varied, resulting in different global multiplicative factors (from 0.53 to 1.18). Criteria including water loss, velocity, water age, free chlorine, and THMs are selected to compare the performance of the network between the current scenario and eight demand scenarios. Water conservation generally increases nodal water age values more in smaller diameter pipes. A nodal chlorine residual reliability index is proposed to account for the duration of low chlorine residuals. With a goal of maintaining a reference free chlorine concentration of ≥0.2 mg/L, the reliability index is less than 0.9 for about 14% of nodes under the reference scenario and this proportion increases to 34% of nodes under the most extreme future water conservation scenario. The robustness of the studied network under different water conservation scenarios is tested by increasing the chlorine residual at the outlet of the WTPs from 1 to 2 mg/L. This is an easily implemented adjustment and dramatically improves the chlorine reliability (<0.9 at only 15% of the nodes), even for the most extreme future water conservation scenario. However, this reliability comes at the cost of higher yet compliant THM concentrations for the low demand scenarios, revealing the challenges of balancing competing water quality goals. With a goal of maintaining a reference level of THMs at ≤80 ug/L, the THM reliability index is ≥0.9 at almost all nodes even under the most extreme conservation scenario. The evaluation of self-cleaning potential velocities shows that sufficient velocities can only be reached at daily maximum flow in 5% of smaller diameter piping even in the reference scenario.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3