Decreasing Rice Cropping Intensity in Southern China from 1990 to 2015

Author:

Jiang MinORCID,Xin Liangjie,Li Xiubin,Tan Minghong,Wang Renjing

Abstract

Assessing changes in rice cropping systems is essential for ensuring food security, greenhouse gas emissions, and sustainable water management. However, due to the insufficient availability of images with moderate to high spatial resolution, caused by frequent cloud cover and coarse temporal resolution, high-resolution maps of rice cropping systems at a large scale are relatively limited, especially in tropical and subtropical regions. This study combined the difference of Normalized Difference Vegetation Index (dNDVI) method and the Normalized Difference Vegetation Index (NDVI) threshold method to monitor changes in rice cropping systems of Southern China using Landsat images, based on the phenological differences between different rice cropping systems. From 1990–2015, the sown area of double cropping rice (DCR) in Southern China decreased by 61054.5 km2, the sown area of single cropping rice (SCR) increased by 20,110.7 km2, the index of multiple cropping decreased from 148.3% to 129.3%, and the proportion of DCR decreased by 20%. The rice cropping systems in Southern China showed a “double rice shrinking and single rice expanding” change pattern from north to south, and the most dramatic changes occurred in the Middle-Lower Yangtze Plain. This study provided an efficient strategy that can be applied to moderate to high resolution images with deficient data availability, and the resulting maps can be used as data support to adjust agricultural structures, formulate food security strategies, and compile a greenhouse gas emission inventory.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3