Penetration Analysis of SAR Signals in the C and L Bands for Wheat, Maize, and Grasslands

Author:

El Hajj Mohammad,Baghdadi Nicolas,Bazzi Hassan,Zribi MehrezORCID

Abstract

This paper assesses the potential of Synthetic Aperture Radar (SAR) in the C and L bands to penetrate into the canopy cover of wheat, maize and grasslands. For wheat and grasslands, the sensitivity of the C and L bands to in situ surface soil moisture (SSM) was first studied according to three levels of the Normalized Difference Vegetation Index (NDVI < 0.4, 0.4 < NDVI < 0.7, and NDVI > 0.7). Next, the temporal evolution of the SAR signal in the C and L bands was analyzed according to SSM and the NDVI. For wheat and grasslands, the results showed that the L-band in HH polarization penetrates the canopy even when the canopy is well-developed (NDVI > 0.7), whereas the penetration of the C-band into the canopy is limited for an NDVI < 0.7. For an NDVI less than 0.7, the sensitivity of the radar signal to SSM is approximately 0.27 dB/vol.% for the L-band in HH polarization and approximately 0.12 dB/vol.% for the C-band (in both VV and VH polarizations). For highly developed wheat and grassland cover (NDVI > 0.7), the sensitivity of the L-band in HH polarization to SSM is approximately 0.19 dB/vol.%, whereas as the C-band is insensitive to SSM. For maize, only the temporal evolution of the C-band according to SSM and the NDVI was studied because the swath of SAR images in the L-band did not cover the maize plots. The results showed that the C-band in VV polarization is able to penetrate the maize canopy even when the canopy is well developed (NDVI > 0.7) due to high-order scattering along the soil-vegetation pathway that contains a soil contribution. According to results obtained in this paper, the L-band would penetrate a well-developed maize cover since the penetration depth of the L-band is greater than that of the C-band.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3