Regional Forest Volume Estimation by Expanding LiDAR Samples Using Multi-Sensor Satellite Data

Author:

Xie BoORCID,Cao Chunxiang,Xu Min,Bashir Barjeece,Singh Ramesh P.ORCID,Huang Zhibin,Lin Xiaojuan

Abstract

Accurate information regarding forest volume plays an important role in estimating afforestation, timber harvesting, and forest ecological services. Traditionally, operations on forest growing stock volume using field measurements are labor-intensive and time-consuming. Recently, remote sensing technology has emerged as a time-cost efficient method for forest inventory. In the present study, we have adopted three procedures, including samples expanding, feature selection, and results generation and evaluation. Extrapolating the samples from Light Detection and Ranging (LiDAR) scanning is the most important step in satisfying the requirement of sample size for nonparametric methods operation and result in accuracy improvement. Besides, mean decrease Gini (MDG) methodology embedded into Random Forest (RF) algorithm served as a selector for feature measure; afterwards, RF and K-Nearest Neighbor (KNN) were adopted in subsequent forest volume prediction. The results show that the retrieval of Forest volume in the entire area was in the range of 50–360 m3/ha, and the results from the two models show a better consistency while using the sample combination extrapolated by the optimal threshold value (2 × 10−4), leading to the best performances of RF (R2 = 0.618, root mean square error, RMSE = 43.641 m3/ha, mean absolute error, MAE = 33.016 m3/ha), followed by KNN (R2 = 0.617, RMSE = 43.693 m3/ha, MAE = 32.534 m3/ha). The detailed analysis that is discussed in the present paper clearly shows that expanding image-derived LiDAR samples helps in refining the prediction of regional forest volume while using satellite data and nonparametric models.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3