Transcriptomic Alterations in Water Flea (Daphnia magna) following Pravastatin Treatments: Insect Hormone Biosynthesis and Energy Metabolism

Author:

Lei Yuan,Guo Jiahua,Chen Qiqi,Mo Jiezhang,Tian Yulu,Iwata Hisato,Song JinxiORCID

Abstract

Pravastatin, used for lowering cholesterol and further decreasing blood lipid, has been frequently detected in the contaminated freshwaters, whereas its long-term exposure effects on non-target aquatic invertebrates remains undetermined. Therefore, the purpose of this study was to evaluate the toxic effects of pravastatin (PRA) with the concentration gradients (0, 0.5, 50, 5000 μg/L) on a model water flea Daphnia magna (D. magna) over 21 d based on phenotypic and genome-wide transcriptomic analyses. After 21 d, exposure to PRA at 5000 μg/L significantly reduced the body length and increased the number of offspring. The 76, 167, and 499 differentially expressed genes (DEGs) were identified by using absolute log2 fold change < 1 and adj p < 0.05 as a cutoff in the 0.5, 50, and 5000 μg/L PRA treatment groups, respectively. Three pathways, including xenobiotic metabolism, insect hormone biosynthesis pathway, and energy metabolism were significantly (p < 0.05) enriched after exposure to PRA. These suggested that the upregulation of genes in insect biosynthetic hormone pathway increased the juvenile hormone III content, which further reduced the body length of D. magna. The positive effect of methyl farnesoate synthesis on the ovarian may result in the increased number of offspring. Furthermore, energy tended to be allocated to detoxification process and survival under stress conditions, as the amount of energy that an individual can invest in maintenance and growth is limited. Taken together, our results unraveled the toxic mechanism of cardiovascular and lipid pharmaceuticals in aquatic invertebrate.

Funder

ShaanXi Thousand Talent Program for Young Outstanding Scientists

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3