Data Fusion and Accuracy Analysis of Multi-Source Land Use/Land Cover Datasets along Coastal Areas of the Maritime Silk Road

Author:

Hou Wan,Hou Xiyong

Abstract

High-precision land use/land cover classification mapping derived from remote sensing supplies essential datasets for scientific research on environmental assessment, climate change simulation, geographic condition monitoring, and environmental management at global and regional scales. It is an important issue in the study of earth system science, and the coastal area is a hot spot region in this field. In this paper, the coastal areas of the Maritime Silk Road were used as the research object and a fusion method based on agreement analysis and fuzzy-set theory was adopted to achieve the fusion of three land use/land cover datasets: MCD12Q1-2010, CCI-LC2010, and GlobeLand30-2010. The accuracy of the fusion results was analyzed using an error matrix, spatial confusion, average overall consistency, and average type-specific consistency. The main findings were as follows. (1) After the establishment of reference data based on Google Earth, both the producer accuracy and user accuracy of the fusion data were improved when compared with those of the three input data sources, and the fusion data had the highest overall accuracy and Kappa coefficient, with values of 90.37% and 0.8617, respectively. (2) Various input data sources differed in terms of the correctly classified contributions and misclassified influences of different land use/land cover types in the fusion data; furthermore, the overall accuracy and Kappa coefficient between the fusion data and any one of the input data sources were far higher than those between any two of the input data sources. (3) The average overall consistency of the fusion data was the highest at 89.29%, which was approximately 5% higher than that of the input data sources. (4) The average type-specific consistencies of cropland, forest, grassland, shrubland, wetland, artificial surfaces, bare land, and permanent snow and ice in the fusion data were the highest, with values of 69.95%, 74.41%, 21.24%, 34.22%, 97.62%, 51.83%, 84.39%, and 2.46%, respectively; compared with the input data sources, the average type-specific consistencies of the fusion data were 0.61–20.32% higher. This paper provides information and suggestions for the development and accuracy evaluation of future land use/land cover data in global and regional coastal areas.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3