Abstract
A novel design has been developed to improve the waste-to-energy process through the integration with a biomass-fired power plant. In the proposed scheme, the superheated steam generated by the waste-to-energy boiler is fed into the low-pressure turbine of the biomass power section for power production. Besides, the feedwater from the biomass power section is utilized to warm the combustion air of the waste-to-energy boiler, and the feedwater of the waste-to-energy boiler is offered by the biomass power section. Based on a 35-MW biomass-fired power plant and a 500-t/d waste-to-energy plant, the integrated design was thermodynamically and economically assessed. The results indicate that the net power generated from waste can be enhanced by 0.66 MW due to the proposed solution, and the waste-to-electricity efficiency increases from 20.49% to 22.12%. Moreover, the net present value of the waste-to-energy section is raised by 5.02 million USD, and the dynamic payback period is cut down by 2.81 years. Energy and exergy analyses were conducted to reveal the inherent mechanism of performance enhancement. Besides, a sensitivity investigation was undertaken to examine the performance of the new design under various conditions. The insights gained from this study may be of assistance to the advancement of waste-to-energy technology.
Funder
National Natural Science Foundation of China
Ministry of Education of the People's Republic of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献