Author:
Bashir Muhammad,Hong Liang
Abstract
Decentralized supervisory structure has drawn much attention in recent years to address the computational complexity in designing supervisory structures for large Petri net model. Many studies are reported in the paradigm of automata while few can be found in the Petri net paradigm. The decentralized supervisory structure can address the computational complexity, but it adds the structural complexity of supervisory structure. This paper proposed a new method of designing a global controller for decentralized systems of a large Petri net model for flexible manufacturing systems. The proposed method can both reduce the computational complexity by decomposition of large Petri net models into several subnets and structural complexity by designing a global supervisory structure that can greatly reduce the cost at the implementation stage. Two efficient algorithms are developed in the proposed method. Algorithm 1 is used to compute decentralized working zones from the given Petri net model for flexible manufacturing systems. Algorithm 2 is used to compute the global controller that enforces the liveness to the decentralized working zones. The ring assembling method is used to reconnect and controlled the working zones via a global controller. The proposed method can be applied to large Petri nets size and, in general, it has less computational and structural complexity. Experimental examples are presented to explore the applicability of the proposed method.
Funder
National Science Basic Research Plan in Shaanxi Province
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献