Protein Food Matrix–ZnO Nanoparticle Interactions Affect Protein Conformation, but May not Be Biological Responses

Author:

Bae Song-Hwa,Yu Jin,Lee Tae,Choi Soo-Jin

Abstract

Because of their nutritional value, zinc oxide (ZnO) nanoparticles (NPs) are applied as a dietary source of zinc, by direct addition to complex, multiple-component food matrices. The thereby occurring interactions of NPs with food matrices may have biological or toxic effects. In particular, NP interactions with food protein can lead to structural deformation of the latter, potentially changing its digestive efficiency and gastrointestinal absorption. In this study, interactions between ZnO NPs and a representative complex protein food matrix, skim milk, were compared with those between NPs and individual components of this food matrix (i.e., protein, saccharide, and mineral). The effects of the interactions on biological responses were investigated in terms of cytotoxicity, cellular uptake, intestinal transport, structural deformation for proteins, and digestive efficiency. The results demonstrated that the physicochemical properties of ZnO NPs were strongly influenced by the protein matrix type, leading to an increased dispersion stability in the complex protein matrix. However, these interactions did not affect cell proliferation, membrane damage, cellular uptake, intestinal transportation, or protein digestive efficiency, although a slight conformational change of proteins was observed in the presence of ZnO NPs. In conclusion, no toxic effects were observed, suggesting the safety of NPs when added to complex food matrices.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influences of TiO2 nanoparticle and fipronil co‐exposure on metabolite profiles in mouse intestines;Journal of Applied Toxicology;2024-07-29

2. Interaction of Nanoparticles With Proteins;Advances in Chemical and Materials Engineering;2024-06-30

3. ZnO Nanorods Coated Glass Substrate Based on Side Coupling Technique for Lactose Sensing Application;2023 International Conference on Electrical, Communication and Computer Engineering (ICECCE);2023-12-30

4. Role of Nanofillers in Food Packaging;Handbook of Nanofillers;2023-11-15

5. Food Additive Solvents Increase the Dispersion, Solubility, and Cytotoxicity of ZnO Nanoparticles;Nanomaterials;2023-09-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3