Abstract
Zika virus (ZIKV) causes microcephaly and congenital eye disease. The cellular and molecular basis of congenital ZIKV infection are not well understood. Here, we utilized a biologically relevant cell-based system of human fetal retinal pigment epithelial cells (FRPEs), hiPSC-derived retinal stem cells (iRSCs), and retinal organoids to investigate ZIKV-mediated ocular cell injury processes. Our data show that FRPEs were highly susceptible to ZIKV infection exhibiting increased apoptosis, whereas iRSCs showed reduced susceptibility. Detailed transcriptomics and proteomics analyses of infected FRPEs were performed. Nucleoside analogue drug treatment inhibited ZIKV replication. Retinal organoids were susceptible to ZIKV infection. The Asian genotype ZIKV exhibited higher infectivity, induced profound inflammatory response, and dysregulated transcription factors involved in retinal organoid differentiation. Collectively, our study shows that ZIKV affects ocular cells at different developmental stages resulting in cellular injury and death, further providing molecular insight into the pathogenesis of congenital eye disease.
Funder
National Institute of Health
California Institute for Regenerative Medicine (CIRM) Quest—Discovery Stage Research Projects
UCLA Interdisciplinary Postdoctoral Training
Stein Eye Institute
Subject
Virology,Infectious Diseases
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献