Author:
Liu Chunhao,Guo Jinjia,Tian Ye,Zhang Chao,Cheng Kai,Ye Wangquan,Zheng Ronger
Abstract
In recent years, the investigation and exploitation of hydrothermal region and polymetallic mineral areas has become a hot topic. The emergence of underwater vehicle platforms has made it possible for new chemical sensors to be applied in marine in-situ detection. Laser-induced breakdown spectroscopy (LIBS), with its advantages of rapid real-time analysis, sampling without pretreatment, simultaneous multi-element detection and stand-off detection, has great potential in marine applications. In this paper, a newly more compact and lighter underwater LIBS system based on the LIBSea system named LIBSea II was developed and tested both in the laboratory and sea trials. The system consists of a Nd:YAG single-pulse laser at 1064 nm, a fiber spectrometer, optical layout, a power supply module and an internal environment sensor. The system is encapsulated in a pressure vessel (Φ 190 mm × L 588 mm) with an optical window on the end cap. Experimental parameters of the system including laser energy and delay time were firstly optimized in the laboratory. Then, field test of the system in nearshore was performed with various samples, including pure metal and alloy samples as well as a manganese nodule sample from deep sea, to verify the detection performance of the LIBSea II system. In 2019, the system was deployed on a remotely operated vehicle (ROV) of Haima for deep sea trial, and atomic lines of K, Na, Ca and strong molecular bands of CaOH from a carbonate rock sample were obtained for the first time at depths of 1400 m. These results show that the LIBSea II system has great potential to be used in deep-sea geological exploration.
Funder
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献