Abstract
In this work, five nanocrystalline first transition-metal (Ti, Mn, Co, Ni and Zn) oxide nanofibers were prepared by electrospinning and controlled calcination. The morphology, crystal structure, pore size distribution and specific surface area were systematically studied by scanning electron microscope (SEM), transmission electron microscope (TEM), surface and pore analysis, and thermo gravimetric analyzer (TGA). The results reveal that the obtained nanofibers have a continuously twisted three-dimensional scaffold structure and are composed of neat nanocrystals with a necklace-like arrangement. All the samples possess high specific surface areas, which follow the order of NiO nanofiber (393.645 m2/g) > TiO2 nanofiber (121.445 m2/g) > ZnO nanofiber (57.219 m2/g) > Co3O4 nanofiber (52.717 m2/g) > Mn2O3 nanofiber (18.600 m2/g). Moreover, the photocatalytic degradation of methylene blue (MB) in aqueous solution was investigated in detail by employing the five kinds of metal oxide nanofibers as photocatalysts under ultraviolet (UV) irradiation separately. The results show that ZnO, TiO2 and NiO nanofibers exhibit excellent photocatalytic efficiency and high cycling ability to MB, which may be ascribed to unique porous structures and the highly efficient separation of photogenerated electron-hole pairs. In brief, this paper aims to provide a feasible approach to achieve five first transition-metal oxide nanofibers with excellent performance, which is important for practical applications.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献