Abstract
The quantitative analysis of pharmaceuticals in biomatrices by liquid chromatography coupled with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) is often hampered by adduct formation. The use of the molecular ion resulting from solvent adducts for quantification is uncommon, even if formed in high abundance. In this work, we propose the use of a protonated acetonitrile adduct for the quantitative analysis of tranexamic acid (TXA) by LC-MS/MS. The high abundance of the protonated acetonitrile adduct [M + ACN + H]+ was found to be independent of source-dependent parameters and mobile phase composition. The results obtained for TXA analysis in clinical samples were comparable for both [M + ACN + H]+ and [M + H]+, and no statistically significant differences were observed. The relative stability and structure of the [M + ACN + H]+ ions were also studied by analyzing probable structures from an energetic point of view and by quantum chemical calculations. These findings, and the studied fragmentation pathways, allowed the definition of an acetimidium structure as the best ion to describe the observed acetonitrile protonated adduct of TXA.
Funder
Fundação para a Ciência e Tecnologia
Programa Operacional Regional Norte
European Social Fund
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献