Hydrothermal Carbonization of Spent Coffee Grounds

Author:

Kim Hyeok-Jin,Oh Sea-Cheon

Abstract

With increasing coffee production and consumption, the amount of coffee by-product is also increasing. Therefore, there is growing worldwide interest in using these by-products as a renewable energy source. In this study, hydrothermal carbonization was conducted with subcritical water to improve the fuel characteristics of spent coffee grounds. The water content was varied, with the mass ratio between the dry sample and water set to 1:1.5 and 1:4. The reaction temperature was increased by 10 °C from 180 to 250 °C. The fuel and thermal characteristics of the reaction products were investigated through mass and energy yields, elemental, proximate, and heating value analysis. In analysis results, as the reaction temperature increased, carbon and fixed carbon content increased, and oxygen and volatile matter content decreased, resulting in an increase in calorific value. Thermogravimetric analysis, derivative thermogravimetry, and Fourier transform infrared spectroscopy were also conducted on the reaction products. To investigate their storage characteristics, chemical oxygen demand analysis was conducted. The results showed that with increasing reaction temperature, the fixed carbon content and heating value increased; also, the fuel characteristics became similar to those of coal. In addition, the reaction products became more hydrophobic as the reaction temperature increased.

Funder

Ministry of Trade, Industry and Energy

Korea Ministry of Environment

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3