Injectable Composite Systems of Gellan Gum:Alginate Microparticles in Pluronic Hydrogels for Bioactive Cargo Controlled Delivery: Optimization of Hydrogel Composition based on Rheological Behavior

Author:

Carrêlo Henrique,Escoval André R.,Soares Paula I. P.ORCID,Borges João P.ORCID,Cidade Maria TeresaORCID

Abstract

Due to the high complexity of some treatments, there is a need to develop drug-delivery systems that can release multiple drugs/bioactive agents at different stages of treatment. In this study, a thermoresponsive injectable dual-release system was developed with gellan gum/alginate microparticles (GG:Alg) within a thermoresponsive Pluronic hydrogel composed of a mixture of Pluronic F127 and F68. The increase in F68 ratio and decrease in F127 lead to higher transition temperatures. The addition of the GG:Alg microparticles decreased the transition temperatures with a linear tendency. In Pluronic aqueous solutions (20 wt.%), the F127:F68 ratios of 16:4 and 17:3 (wt.%:wt.%) and the addition of microparticles (up to 15 wt.%) maintained the sol–gel transition temperatures within a suitable range (between 25 °C and 37 °C). Microparticles did not hinder the injectability of the system in the sol phase. Methylene blue was used as a model drug to evaluate the release mechanisms from microparticles, hydrogel, and composite system. The hydrogel delayed the release of methylene blue from the microparticles. The hydrogel loaded with methylene blue released at a faster rate than the microparticles within the hydrogel, thus demonstrating a dual-release profile.

Funder

FCT-Fundação para a Ciência e a Tecnologia

CEECIND

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference48 articles.

1. Nano based drug delivery systems: Recent developments and future prospects;Patra;J. Nanobiotechnol.,2018

2. Stimuli-responsive nanocarriers for drug delivery;Mura;Nat. Mater.,2013

3. Hydrogel: Preparation, characterization, and applications: A review;Ahmed;J. Adv. Res.,2015

4. Multilayer Injectable Hydrogel System Sequentially Delivers Bioactive Substances for Each Wound Healing Stage;Ma;ACS Appl. Mater. Interfaces,2020

5. An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration;Zhu;Biomaterials,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3