A Molecular Dynamics Study on the Tribological Performance of Imidazolium−Based Ionic Liquids Mixed with Oil in Comparison to Pure Liquids

Author:

Lazarenko Daria,Khabaz FardinORCID

Abstract

The purpose of this work is to propose an advanced lubricant model of ILs used as additives to conventional oil. All-atoms molecular dynamics simulations are used to investigate the structure and tribology of oxidatively stable pure imidazolium-based ionic liquids (ILs), branched alkane low friction oil, and a mixture of ILs and oil confined between iron surfaces. Equilibrium and shear simulations are performed at a temperature of 450 K and undergo different applied loads and shear velocities to mimic engine operations. Density profiles reveal the formation of layered structures at the interface. The intensity and number of the density peaks vary according to the composition of the system and the applied pressure. Velocity profiles reveal the presence of no-slip conditions in the pure ILs system and very high slip for the oil. The presence of a stable IL layer at the surface of the mixed lubricant fully reduces the slip of oil. Overall, the mixture displays lower friction in comparison to pure ILs. The formed corrosion protective anion layer on the metal surface makes the mixture a potential candidate for a new generation of high-performance lubricants.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3