Affiliation:
1. Abdus Salam School of Mathematical Sciences (AS-SMS), Government College University, Lahore 54000, Pakistan
2. Department of Mathematics, Korea University, Seoul 02841, Republic of Korea
Abstract
When deblurring an image, ensuring that the restored intensities are strictly non-negative is crucial. However, current numerical techniques often fail to consistently produce favorable results, leading to negative intensities that contribute to significant dark regions in the restored images. To address this, our study proposes a mathematical model for non-blind image deblurring based on total fractional-order variational principles. Our proposed model not only guarantees strictly positive intensity values but also imposes limits on the intensities within a specified range. By removing negative intensities or constraining them within the prescribed range, we can significantly enhance the quality of deblurred images. The key concept in this paper involves converting the constrained total fractional-order variational-based image deblurring problem into an unconstrained one through the introduction of the augmented Lagrangian method. To facilitate this conversion and improve convergence, we describe new numerical algorithms and introduce a novel circulant preconditioned matrix. This matrix effectively overcomes the slow convergence typically encountered when using the conjugate gradient method within the augmented Lagrangian framework. Our proposed approach is validated through computational tests, demonstrating its effectiveness and viability in practical applications.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献