Total Fractional-Order Variation-Based Constraint Image Deblurring Problem

Author:

Saleem Shahid1,Ahmad Shahbaz1ORCID,Kim Junseok2ORCID

Affiliation:

1. Abdus Salam School of Mathematical Sciences (AS-SMS), Government College University, Lahore 54000, Pakistan

2. Department of Mathematics, Korea University, Seoul 02841, Republic of Korea

Abstract

When deblurring an image, ensuring that the restored intensities are strictly non-negative is crucial. However, current numerical techniques often fail to consistently produce favorable results, leading to negative intensities that contribute to significant dark regions in the restored images. To address this, our study proposes a mathematical model for non-blind image deblurring based on total fractional-order variational principles. Our proposed model not only guarantees strictly positive intensity values but also imposes limits on the intensities within a specified range. By removing negative intensities or constraining them within the prescribed range, we can significantly enhance the quality of deblurred images. The key concept in this paper involves converting the constrained total fractional-order variational-based image deblurring problem into an unconstrained one through the introduction of the augmented Lagrangian method. To facilitate this conversion and improve convergence, we describe new numerical algorithms and introduce a novel circulant preconditioned matrix. This matrix effectively overcomes the slow convergence typically encountered when using the conjugate gradient method within the augmented Lagrangian framework. Our proposed approach is validated through computational tests, demonstrating its effectiveness and viability in practical applications.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-Level method for blind image deblurring problems;Applied Mathematics and Computation;2025-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3