PointMapNet: Point Cloud Feature Map Network for 3D Human Action Recognition

Author:

Li Xing12,Huang Qian12ORCID,Zhang Yunfei12,Yang Tianjin12,Wang Zhijian12

Affiliation:

1. The Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China

2. School of Computer and Information, Hohai University, Nanjing 211100, China

Abstract

3D human action recognition is crucial in broad industrial application scenarios such as robotics, video surveillance, autonomous driving, or intellectual education, etc. In this paper, we present a new point cloud sequence network called PointMapNet for 3D human action recognition. In PointMapNet, two point cloud feature maps symmetrical to depth feature maps are proposed to summarize appearance and motion representations from point cloud sequences. Specifically, we first convert the point cloud frames to virtual action frames using static point cloud techniques. The virtual action frame is a 1D vector used to characterize the structural details in the point cloud frame. Then, inspired by feature map-based human action recognition on depth sequences, two point cloud feature maps are symmetrically constructed to recognize human action from the point cloud sequence, i.e., Point Cloud Appearance Map (PCAM) and Point Cloud Motion Map (PCMM). To construct PCAM, an MLP-like network architecture is designed and used to capture the spatio-temporal appearance feature of the human action in a virtual action sequence. To construct PCMM, the MLP-like network architecture is used to capture the motion feature of the human action in a virtual action difference sequence. Finally, the two point cloud feature map descriptors are concatenated and fed to a fully connected classifier for human action recognition. In order to evaluate the performance of the proposed approach, extensive experiments are conducted. The proposed method achieves impressive results on three benchmark datasets, namely NTU RGB+D 60 (89.4% cross-subject and 96.7% cross-view), UTD-MHAD (91.61%), and MSR Action3D (91.91%). The experimental results outperform existing state-of-the-art point cloud sequence classification networks, demonstrating the effectiveness of our method.

Funder

the National Key Research and Development Program of China

the 14th Five-Year Plan for Educational Science of Jiangsu Province

the Jiangsu Higher Education Reform Research Project

the 2022 Undergraduate Practice Teaching Reform Research Project of Hohai University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3