A Coupling Optimization Method of Vehicle Structure and Restraint System for Occupant Injury Protection in Traffic Accidents

Author:

Wang Danqi12ORCID,Zhang Junyuan3,Zhang Tianqi3,Zhang Honghao4ORCID,Peng Yong4

Affiliation:

1. College of Automobile and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410000, China

2. State Key Laboratory of Automobile Safety and Energy Conservation, Tsinghua University, Beijing 100000, China

3. State Key Laboratory of Automobile Simulation and Control, Jilin University, Changchun 130025, China

4. Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410000, China

Abstract

Vehicle front-end structure has the characteristic of symmetry. The damage of occupants in the crash process is determined by the combined effect of the front-end structure and the restraint system of the vehicle. In this paper, the coupling relationship and an optimized method for the vehicle front-end structure and restraint system are studied based on vehicle crash dynamics, to reduce occupant injury. A fast solution algorithm for occupant motion response was established using a crash analytical model. Then, an occupant response database was established using the algorithm, to analyze the coupling relationship between the crash pulse and the restraint specific stiffness, with respect to the curve shape and parameters. The results showed that the combination of the concave crash pulse and upward restraint stiffness curve was the best coupling. Subsequently, a coupled optimization method of a concave pulse and upward restraint stiffness was proposed and combined with a crash analytical model and genetic algorithm (GA). The crash pulse and restraint stiffness of vehicle crash data from the NHTSA databases were optimized, as an example, to verify the effectiveness of the method. The optimal occupant acceleration was reduced by 44%. In addition, the feasibility of the optimal result is discussed, to provide a reference for occupant injury protection in traffic accidents.

Funder

State Key Laboratory of Automotive Safety and Energy

China Postdoctoral Science Foundation Funded Project

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3