EMSI-BERT: Asymmetrical Entity-Mask Strategy and Symbol-Insert Structure for Drug–Drug Interaction Extraction Based on BERT

Author:

Huang Zhong123,An Ning13ORCID,Liu Juan2,Ren Fuji4ORCID

Affiliation:

1. Anhui Province Key Laboratory of Affective Computing and Advanced Intelligent Machine, School of Computer Science and Information, Hefei University of Technology, Hefei 230009, China

2. School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246011, China

3. Key Laboratory of Knowledge Engineering with Big Data, Ministry of Education, Hefei University of Technology, Hefei 230601, China

4. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China

Abstract

Drug-drug interaction (DDI) extraction has seen growing usage of deep models, but their effectiveness has been restrained by limited domain-labeled data, a weak representation of co-occurring entities, and poor adaptation of downstream tasks. This paper proposes a novel EMSI-BERT method for drug–drug interaction extraction based on an asymmetrical Entity-Mask strategy and a Symbol-Insert structure. Firstly, the EMSI-BERT method utilizes the asymmetrical Entity-Mask strategy to address the weak representation of co-occurring entity information using the drug entity dictionary in the pre-training BERT task. Secondly, the EMSI-BERT method incorporates four symbols to distinguish different entity combinations of the same input sequence and utilizes the Symbol-Insert structure to address the week adaptation of downstream tasks in the fine-tuning stage of DDI classification. The experimental results showed that EMSI-BERT for DDI extraction achieved a 0.82 F1-score on DDI-Extraction 2013, and it improved the performances of the multi-classification task of DDI extraction and the two-classification task of DDI detection. Compared with baseline Basic-BERT, the proposed pre-training BERT with the asymmetrical Entity-Mask strategy could obtain better effects in downstream tasks and effectively limit “Other” samples’ effects. The model visualization results illustrated that EMSI-BERT could extract semantic information at different levels and granularities in a continuous space.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Province of China

Key Project of Anhui University Excellent Young Talents Support Plan of China

Natural Science Research Project of the Education Department of Anhui Province

Project of Provincial Key Laboratory for Computer Information Processing Technology of Soochow University of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference58 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3