Effects of Land Use Conversion on the Soil Microbial Community Composition and Functionality in the Urban Wetlands of North-Eastern China

Author:

Wu Yining,Gao Weifeng,Zou Yu,Dong Haiyan,Yu Fei,Wang He,Zong Cheng

Abstract

Urban wetlands are undergoing intensive conversion from natural wetlands to farmlands, woodlands, and even alkaline land. This study aimed to determine the effects of land conversion on soil microbial communities of urban wetlands in the hinterland of Songnen Plain, Northeastern China. Soil samples were collected from various sites of Longfeng wetland, including swamp wetland (SW), meadow wetland (MW), woodland (WL), farmland (FL), and alkaline land (AL). High-throughput sequencing followed by bioinformatic analysis was conducted to evaluate the structure, composition, and function of soil bacterial and fungal communities. The most dominant bacterial and fungal phylum among the land-use types were Proteobacteria and Ascomycota, respectively. In addition, the bacterial diversity and functions varied significantly across different land-use types. However, no remarkable differences in fungal communities were observed under various land-use types. Edaphic parameters, including exchange sodium percent (ESP) and total nitrogen (TN), remarkably influenced the abundance and diversity of soil microbial communities. These results show that land-use type shapes various aspects of soil microbial communities, including soil physicochemical properties, microbial taxa structure, potential functional genes, and correlation with environmental factors. This study provides reliable data to guide land use management and supervision by decision-makers in this region.

Funder

Heilongjiang Postdoctoral Science Foundation

Natural Sciences Foundation of Heilongjiang Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3