Frames of Group Sets and Their Application in Bundle Theory

Author:

Pap Eric12ORCID,Waalkens Holger1ORCID

Affiliation:

1. Bernoulli Institute, University of Groningen, 9747 AG Groningen, The Netherlands

2. Van Swinderen Institute, University of Groningen, 9747 AG Groningen, The Netherlands

Abstract

We study fiber bundles where the fibers are not a group G but a free G-space with disjoint orbits. The fibers are then not torsors but disjoint unions of these; hence, we like to call them semi-torsors. Bundles of semi-torsors naturally generalize principal bundles, and we call these semi-principal bundles. These bundles admit parallel transport in the same way that principal bundles do. The main difference is that lifts may end up in another group orbit, meaning that the change cannot be described by group translations alone. The study of such effects is facilitated by defining the notion of a basis of a G-set, in analogy with a basis of a vector space. The basis elements serve as reference points for the orbits so that parallel transport amounts to reordering the basis elements and scaling them with the appropriate group elements. These two symmetries of the bases are described by a wreath product group. The notion of basis also leads to a frame bundle, which is principal and so allows for a conventional treatment. In fact, the frame bundle functor is found to be a retraction from the semi-principal bundles to the principal bundles. The theory presented provides a mathematical framework for a unified description of geometric phases and exceptional points in adiabatic quantum mechanics.

Publisher

MDPI AG

Reference10 articles.

1. Hamilton, M.J. (2017). Mathematical Gauge Theory, Springer International Publishing.

2. A Unified View on Geometric Phases and Exceptional Points in Adiabatic Quantum Mechanics;Pap;SIGMA,2022

3. Hatcher, A. (2001). Algebraic Topology, Cambridge University Press.

4. Classification of principal bundles and Lie groupoids with prescribed gauge group bundle;Mackenzie;J. Pure Appl. Algebra,1989

5. Lee, J.M. (2012). Introduction to Smooth Manifolds, Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3