Graph-Based Hotspot Detection of Socio-Economic Data Using Rough-Set

Author:

Tabarej Mohd Shamsh12ORCID,Minz Sonajharia1,Shaikh Anwar Ahamed2,Shuaib Mohammed3ORCID,Jeribi Fathe3ORCID,Alam Shadab3ORCID

Affiliation:

1. School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, India

2. Department of CSE, Koneru Lakshmaiah Education Foundation, Vaddeswaram 522502, India

3. Department of Computer Science, College of Engineering and Computer Science, Jazan University, Jazan 45142, Saudi Arabia

Abstract

The term hotspot refers to a location or an area where the occurrence of a particular phenomenon, event, or activity is significantly higher than in the surrounding areas. The existing statistical methods need help working well on discrete data. Also, it can identify a false hotspot. This paper proposes a novel graph-based hotspot detection using a rough set (GBHSDRS) for detecting the hotspots. This algorithm works well with discrete spatial vector data. Furthermore, it removes the false hotspot by finding the statistical significance of the identified hotspots. A rough set theory is applied to the graph of the spatial polygon data, and the nodes are divided into lower, boundary, and negative regions. Therefore, the candidate hotspot belongs to the lower region of the set, and the boundary value analysis will ensure the identification of the hotspots if the hotspot is present in the dataset. The p-value is used to find the statistical significance of the hotspots. The algorithm is tested on the socioeconomic data of Uttar Pradesh (UP) from 1991 on medical facilities. The average gain in density and Hotspot Prediction Accuracy Index (HAPI) of the detected hotspots is 26.54% and 23.41%, respectively. An average reduction in runtime is 27.73%, acquired compared to all other methods on the socioeconomic data.

Funder

Deanship of Graduate Studies and Scientific Research, Jazan University, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3