New Extension of Darbo’s Fixed Point Theorem and Its Application to a System of Weighted-Fractional-Type Integral Equations

Author:

Paunović Marija12ORCID,Savić Ana3,Kalita Hemanta4,Deb Sudip5,Parvaneh Vahid6ORCID

Affiliation:

1. Department of Natural Sciences, Faculty of Hotel Management and Tourism, University of Kragujevac, 36210 Vrnjačka Banja, Serbia

2. Faculty of Business and Law, University “MB”, 11000 Belgrade, Serbia

3. Academy of Technical and Art Applied Studies, 11000 Belgrade, Serbia

4. Mathematics Division, School of Advanced Sciences and Languages, VIT Bhopal University, Bhopal-Indore Highway, Sehore 466114, Madhya Pradesh, India

5. Department of Mathematics, Pandit Deendayal Upadhyaya Adarsha Mahavidyalaya, Amjonga, Goalpara 783124, Assam, India

6. Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb 6787141343, Iran

Abstract

In this article, we introduce several new extensions of Darbo’s fixed point theorem with newly constructed contraction functions associated with the measure of noncompactness. We apply our new extensions to prove the existence of solutions for a system of weighted fractional integral equations in Banach space BC(R+). At the end, we establish an example to show the applicability of our discovery.

Funder

Science Fund of the Republic of Serbia

Ministry of Science, Technological Development and Innovation of the Republic of Serbia

Academy of Technical and Art Applied Studies, Belgrade, Serbia

Publisher

MDPI AG

Reference16 articles.

1. Sur les espaces complets;Kuratowski;Fund. Math.,1930

2. Punti uniti in trasformazioni a codominio non compatto (Italian);Darbo;Rend. Sem. Mat. Univ. Padova,1955

3. Solvability of functional-integral equations (fractional order) using measure of noncompactness;Arab;Adv. Differ. Equations,2020

4. Solvability of fractional integral equations via Darbo’s fixed point theorem;Deuri;J.-Pseudo-Differ. Oper. Appl.,2022

5. Darbo type fixed and coupled fixed point results and its application to integral equation;Nashine;Periodica Math. Hung.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3