Agri-Food Management and Sustainable Practices: A Fuzzy Clustering Application Using the Galois Lattice

Author:

Espitia Moreno Irma Cristina1,Ruiz Morales Betzabé1,Alfaro-García Víctor G.1ORCID,Miranda-Ackerman Marco A.2

Affiliation:

1. Facultad de Contaduría y Ciencias Administrativas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58000, Mexico

2. Academy for Built Environment & Logistics, Breda University of Applied Sciences, 4817 Breda, The Netherlands

Abstract

The objective of this study was to generate groups of agri-food producers with high affinity in relation to their sustainable waste management practices. The aim of conforming these groups is the development of synergies, knowledge management, and policy- and decision-making by diverse stakeholders. A survey was conducted among the most experienced farmers in the region of Nuevo Urecho, Michoacán, Mexico, and a total of eight variables relating to sustainable waste management practices, agricultural food loss, and the waste generated at each stage of the production process were examined. The retrieved data were treated using the maximum inverse correspondence algorithm and the Galois Lattice was applied to generate clusters of highly affine producers. The results indicate 163 possible elements that generate the power set, and 31 maximum inverse correspondences were obtained. At this point, it is possible to determine the maximum number of relationships, called affinities. In general, all 15 considered farmers shared the measure of revaluation of food waste and 90% of the farmers shared affinity in measures related to ecological care and the proper management of waste. A practical implication of this study is the conformation of highly affine clusters for both policy and strategic decision-making.

Funder

CONAHCYT Consejo Nacional de Humanidades Ciencias y Tecnologías

Red Sistemas Inteligentes y Expertos Modelos Computacionales Iberoamericanos

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3