1. Kawar, B., Zada, S., Lang, O., Tov, O., Chang, H., Dekel, T., Mosseri, I., and Irani, M. (2023, January 17–24). Imagic: Text-based real image editing with diffusion models. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada.
2. Manukyan, H., Sargsyan, A., Atanyan, B., Wang, Z., Navasardyan, S., and Shi, H. (2023). Hd-painter: High-resolution and prompt-faithful text-guided image inpainting with diffusion models. arXiv.
3. Bar-Tal, O., Yariv, L., Lipman, Y., and Dekel, T. (2023, January 23–29). Multidiffusion: Fusing diffusion paths for controlled image generation. Proceedings of the ICML’23: International Conference on Machine Learning, Honolulu, HI, USA.
4. Kingma, D.P., and Welling, M. (2013). Auto-encoding variational bayes. arXiv.
5. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. Adv. Neural Inf. Process. Syst., 27.