Are Wetlands as an Integrated Bioremediation System Applicable for the Treatment of Wastewater from Underground Coal Gasification Processes?

Author:

Borgulat Jacek,Ponikiewska Katarzyna,Jałowiecki Łukasz,Strugała-Wilczek AleksandraORCID,Płaza Grażyna

Abstract

Underground coal gasification (UCG) can be considered as one of the clean coal technologies. During the process, the gas of industrial value is produced, which can be used to produce heat and electricity, liquid fuels or can replace natural gas in chemistry. However, UCG does carry some environmental risks, mainly related to potential negative impacts on surface and groundwater. Wastewater and sludge from UCG contain significant amounts of aliphatic and aromatic hydrocarbons, phenols, ammonia, cyanides and hazardous metals such as arsenic. This complicated matrix containing high concentrations of hazardous pollutants is similar to wastewater from the coke industry and, similarly to them, requires complex mechanical, chemical and biological treatment. The focus of the review is to explain how the wetlands systems, described as one of bioremediation methods, work and whether these systems are suitable for removing organic and inorganic contaminants from heavily contaminated industrial wastewater, of which underground coal gasification wastewater is a particularly challenging example. Wetlands appear to be suitable systems for the treatment of UCG wastewater and can provide the benefits of nature-based solutions. This review explains the principles of constructed wetlands (CWs) and provides examples of industrial wastewater treated by various wetland systems along with their operating principles. In addition, the physicochemical characteristics of the wastewater from different coal gasifications under various conditions, obtained from UCG’s own experiments, are presented.

Funder

EU Research Fund for Coal and Steel

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference120 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3