Dimensional Analysis of Workpieces Machined Using Prototype Machine Tool Integrating 3D Scanning, Milling and Shaped Grinding

Author:

Jaskólski Piotr,Nadolny KrzysztofORCID,Kukiełka KrzysztofORCID,Kapłonek WojciechORCID,Pimenov Danil YurievichORCID,Sharma ShubhamORCID

Abstract

In the literature, there are a small number of publications regarding the construction and application of machine tools that integrate several machining operations. Additionally, solutions that allow for such integration for complex operations, such as the machining of shape surfaces with complex contours, are relatively rare. The authors of this article carried out dimensional analysis of workpieces machined using a prototype Computerized Numerical Control (CNC) machine tool that integrates the possibilities of 3D scanning, milling operations in three axes, and grinding operations using abrasive discs. The general description of this machine tool with developed methodology and the most interesting results obtained during the experimental studies are given. For a comparative analysis of the influence of the machining method on the geometric accuracy of the test pieces, an Analysis of Variance (ANOVA) was carried out. The obtained results show that for four considered features (deviations of flatness, vertical parallelism, opening dimensions, and opening cylindricality), no statistically significant differences were detected. For the evaluation criteria, the probability level p exceeded the assumed confidence level α = 0.05 and ranged from p = 0.737167 to p = 0.076764. However, such differences were found for two others—a dimensional deviation between flat surfaces (p = 0.010467) and horizontal parallelism deviation (p = 0.0)—as well as for the quality of the machined surface defined by four surface texture parameters: Ra (p = 0.831797), Rt (p = 0.759636), Rq (p = 0.867222), and Rz (p = 0.651896). The information obtained by the ANOVA will be useful for the elimination the weaknesses of the prototype machine tool, further analysis of technological strategies, and to find possible benefits of integrating machining operations.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3