A Laboratory-Scale Study of Selected Chinese Typical Flammable Wildland Timbers Ignition Formation Mechanism

Author:

Yang WenxuORCID,Bakar B. H. AbuORCID,Mamat Hussin,Gong Liang,Nursyamsi Nursyamsi

Abstract

Firebrands are the primary source of ignition for large wildfires and urban wildfires (WUIs). China is a country with a high incidence of forest fires, and there are great differences in the terrain, climate, and other natural conditions in different regions; the frequency of forest fire will lead to greater regional differences. In the process of fighting forest fire, the fire commander should make an accurate analysis and judgment according to the various signs of the fire, which are the key to ensure the safety of the participants and to realize a quick decision. Existing studies of firebrands formation have been performed using limited quantities of wildland fuels with limited MC fuel levels and environmental conditions and lacking comprehensive data analysis including typical wildland timbers basic fuel, pyrolysis and flammability properties, and forest fire dynamic knowledge (including forest fire development period analysis and the harm of heat flux to the human body) to guide the firefighting strategy. To better understand the characteristics of firebrand formation in different Chinese regional places, a systematic study to quantify wildland fuels ignition formation by testing different fuels under different conditions is needed. The objective of this study was to determine the basic pyrolysis and flammability of wildland fuels with high fire intensity in typical areas of China to provide relevant property data, offering insight into how wildland fuels arrangement can determine the movement of wildfires for firefighting strategy. Thermogravimetric analysis (TGA) was used to determine the pyrolysis performance of selected wild fuels under different heating rates and different fuel MC values. The flammability of selected wildland fuels at different heat fluxes and at different moisture contents was determined using a cone calorimeter. This study measured the pyrolysis and flammability of some selected wildland fuels and found that some controlling factors (MC levels, heating conditions) influenced the outcome variables, especially the flammability of wildland timber. Fire behavior refers to the intensity at which a fire burns and how it moves. This research results point out the following: (1) Forest fire barriers or fuel breaks should be separated among Eucalyptus robusta Smith and Pinus massoniana before or in the fire due to high risk for ignition and strong flammability, and it is suggested to remove, control, and replace high-risk flammable timbers with low-risk flammable timbers as a part of long-term wildland fire management strategies. (2) Fire commanders could utilize some research to test conclusions and make an accurate analysis and judgment: The TTI time for each material indicates the ideal time for firefighters to put out fire, the peak of heat-release time indicates a fully developed fire to suggest firefighters finish work before the forest fire spirals out of control, and the flameout time represents the moment of low risk of fuel ignition, so firefighters could allow the fuel to burn out and change the extinguishing target to other regions of developing forest firebrands.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Reference31 articles.

1. Firebrands generated from a full-scale structure burning under well-controlled laboratory conditions;Brown;Fire Saf. J.,2014

2. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis;Park;Combust Flame,2010

3. Cohen, J. (2008). The wildland-urban interface fire problem: A consequence of the fire exclusion paradigm. For. Hist Today Fall, 20–26.

4. Pyrolysis Kinetics of physical components of wood and wood-polymers using Iso-conversion method;Jin;Agriculture,2013

5. Firebrands and spotting ignition in large-scale fires;Koo;Int. J. Wildland Fire,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3