Sulfuric Acid Leaching of Altered Ilmenite Using Thermal, Mechanical and Chemical Activation

Author:

Dubenko Anastasiia V.ORCID,Nikolenko Mykola V.ORCID,Kostyniuk AndriiORCID,Likozar BlažORCID

Abstract

The kinetics of the sulfuric acid leaching of altered ilmenite, mechanisms, and process intensification methods were studied. The effect of changing the chemical composition during grinding was determined. The content of ilmenite and pseudorutile decreased from 5.3% to 3.1% and from 90.2% to 63.1%, respectively. Rutile increased from 4.5% to 28.7%, while a pseudobrookite new phase appeared in the amount of 5.1% after 2 h of grinding. It was found that the modification of raw material by sulfuric acid led to the increase of the decomposition rate, and at the same time, decreased when the ore was utilized due to an increase of insoluble TiO2 content. Isothermal conditions were evaluated with H2SO4 concentration varying from 50 to 96%. The data obtained were described with the approximation of the contracting sphere model. It was shown for the first time that H2SO4 > 85 wt% causes a sharp constant decrease of titanium. Correlating these phenomena allows for the consideration of H2SO4·H2O as reagents, rather than H2SO4 molecules. It was experimentally proven that at a temperature above 190 °C, the Ti leaching degree dropped, which is explained by the formation of polymerized TiOSO4. Finally, it was shown that adding NaF reduced the activation energy to 45 kJ/mol.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3