Author:
González-Quiñones Juan,Reinoso-Gordo Juan,León-Robles Carlos,García-Balboa José,Ariza-López Francisco
Abstract
Point cloud (PC) generation from photogrammetry–remotely piloted aircraft systems (RPAS) at high spatial and temporal resolution and accuracy is of increasing importance for many applications. For several years, photogrammetry–RPAS has been used to recover civil engineering works such as digital elevation models (DEMs), triangle irregular networks (TINs), contour levels, orthophotographs, etc. This study analyzes the influence of variables involved in the accuracy of PC generation over asphalt shapes and determines the most influential variable based on the development of an artificial neural network (ANN) with patterns identified in the test flights. The input variables were those involved, and output was the three-dimension root mean square error (3D-RMSE) of the PC in each ground control point (GCP). The result of the study shows that the most influential variable over PC accuracy is the modulation transfer function 50 (MTF50). In addition, the study obtained an average 3D-RMSE of 1 cm. The results can be used by the scientific and civil engineering communities to consider MTF50 variables in obtaining images from RPAS cameras and to predict the accuracy of a PC over asphalt based on the ANN developed. Also, this ANN could be the beginning of a large database containing patterns from several cameras and lenses in the world market.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献