EGCY-Net: An ELAN and GhostConv-Based YOLO Network for Stacked Packages in Logistic Systems

Author:

Firdiantika Indah Monisa1ORCID,Lee Seongryeong1,Bhattacharyya Chaitali1ORCID,Jang Yewon1,Kim Sungho1ORCID

Affiliation:

1. Department of Electronic Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan-si 38541, Republic of Korea

Abstract

Dispatching, receiving, and transporting goods involve a large amount of manual effort. Within a logistics supply chain, a wide variety of transported goods need to be handled, recognized, and checked at many different points. Effective planning of automated guided vehicle (AGV) transportation can reduce equipment energy consumption and shorten task completion time. As the need for efficient warehouse logistics has increased in manufacturing systems, the use of AGVs has also increased to reduce working time. These processes hold automation potential, which we can exploit by using computer vision techniques. We propose a method for the complete automation of box recognition, covering both the types and quantities of boxes. To do this, an ELAN and GhostConv-based YOLO network (EGCY-Net) is proposed with a Conv-GhostConv Stack (CGStack) module and an ELAN-GhostConv Network (EGCNet). To enhance inter-channel relationships, the CGStack module captures complex patterns and information in the image by using ghost convolution to increase the model inference speed while retaining the ability to capture spatial features. EGCNet is designed and constructed based on ELAN and the CGStack module to capture and utilize hierarchical features efficiently in layer aggregation. Additionally, the proposed methodology involves the creation of a dataset comprising images of boxes taken in warehouse settings. The proposed system is realized on the NVIDIA Jetson Nano platform, using an Arducam IMX477 camera. To evaluate the proposed model, we conducted experiments with our own dataset and compared the results with some state-of-the-art (SOTA) models. The proposed network achieved the highest detection accuracy with the fewest parameters compared to other SOTA models.

Funder

2023 Yeungnam University research grants

Ministry of SMEs and Startups (MSS) of the Korean government

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Violence-YOLO: Enhanced GELAN Algorithm for Violence Detection;Applied Sciences;2024-08-01

2. A Novel ROI-based Dataset for PCB Defects Detection and Classification;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3