Design, Synthesis and Molecular Modeling Study of Radiotracers Based on Tacrine and Its Derivatives for Study on Alzheimer’s Disease and Its Early Diagnosis

Author:

Koźmiński Przemysław1ORCID,Gniazdowska Ewa1ORCID

Affiliation:

1. Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland

Abstract

From 1993 to 2013, tacrine was an approved drug for Alzheimer’s disease. Due to its strong inhibitory properties towards cholinesterase, tacrine causes an increase in the level of the neurotransmitter acetylcholine in the cholinergic system of the central nervous system. This work presents a review of articles in which tacrine or its derivatives labeled with the radionuclides 3H, 11C, 14C, 123I, 99mTc and 68Ga were used as vectors in radiotracers dedicated to the diagnosis of Alzheimer’s disease. The possibility of clinical applications of the obtained radiopreparations was assessed by analyzing their physicochemical properties, ability to cross the blood–brain barrier and the level of uptake in the brain. Based on these data, it was shown that radiopreparations based on the tacrine molecule or its very close analogues retain the ability to cross the blood–brain barrier, while radiopreparations containing a more modified tacrine molecule (connected via a linker to a radionuclide chelator) lose this ability. This is probably the result of the addition of a chelator, which significantly increases the size of the radiopreparation and reduces its lipophilicity. Computer docking studies of tacrine derivatives and/or radiopreparations showed how these compounds bind to the active sites of acetyl- and butyrylcholinesterase.

Publisher

MDPI AG

Reference39 articles.

1. Diagnostics and therapy of Alzheimer’s disease;Indian J. Exp. Biol.,2007

2. Drug Development in Alzheimer’s Disease: The Contribution of PET and SPECT;Declercq;Front. Pharmacol.,2016

3. Alzheimer disease;Knopman;Nat. Rev. Dis. Primers,2021

4. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies;Long;Cell,2019

5. APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia;Sienski;Sci. Transl. Med.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3