Investigating the Relationship between Noise Exposure and Human Cognitive Performance: Attention, Stress, and Mental Workload Based on EEG Signals Using Power Spectrum Density

Author:

Astuti Rahmaniyah Dwi1,Suhardi Bambang1,Laksono Pringgo Widyo1ORCID,Susanto Novie2

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia

2. Department of Industrial Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia

Abstract

A pervasive environmental stressor is one that damages mental and physical health as well as cognitive abilities by producing noise at a specific frequency and level. Current noise pollution levels pose a significant threat to public health, potentially leading to impaired cognitive function, increased stress, and other negative health consequences. This study aims to investigate the relationship between noise exposure and human cognitive abilities using a comprehensive analysis of power spectrum density (PSD) derived from EEG signals. Twenty-four participants completed the experiment to identify the effect of exposure to different noise levels (55 dB, 65 dB, 70 dB, 75 dB, 80 dB, and 85 dB) and two types of continuous and intermittent noise. The Stroop Color–Word Test and the Emotive Epoch EEG are cognitive task instruments used during experiments. Behavioral performance (accuracy and response time) and power spectrum electroencephalographic density were collected and analyzed. The methodology involved collecting EEG data from participants exposed to controlled noise stimuli and a subsequent PSD analysis to uncover frequency-specific patterns associated with cognitive processes. Attention levels were measured by examining beta wave activity, while stress responses were evaluated through an alpha wave analysis. Additionally, mental workload was assessed by considering the overall distribution of PSD through the theta-to-alpha ratio. The results revealed a significant relationship between the exposure to noise types and levels and human cognitive ability. The analysis of the power spectrum density on the cognitive aspects of attention and stress yielded results indicating that participants were in the best attention condition and in a relaxed or unstressed state when exposed to noise levels of 65 dB in both continuous and intermittent noise types. For the mental workload aspect, participants exposed to both continuous and intermittent noise types at a noise level of 70 dB began to indicate the presence of mental workload. These findings supported the importance of considering the impact of environmental noise on human cognitive well-being and demonstrated the potential of EEG monitoring as an objective tool for assessing the impact of noise on cognitive performance.

Funder

Universitas Sebelas Maret

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3