Polyp Generalization via Diversifying Style at Feature-Level Space

Author:

Poudel Sahadev1,Lee Sang-Woong2ORCID

Affiliation:

1. Department of IT Convergence Engineering, Gachon University, Seongnam 13120, Republic of Korea

2. Department of Software, Gachon University, Seongnam 13557, Republic of Korea

Abstract

In polyp segmentation, the latest notable topic revolves around polyp generalization, which aims to develop deep learning-based models capable of learning from single or multiple source domains and applying this knowledge to unseen datasets. A significant challenge in real-world clinical settings is the suboptimal performance of generalized models due to domain shift. Convolutional neural networks (CNNs) are often biased towards low-level features, such as style features, impacting generalization. Despite attempts to mitigate this bias using data augmentation techniques, learning model-agnostic and class-specific feature representations remains complex. Previous methods have employed image-level transformations with styles to supplement training data diversity. However, these approaches face limitations in ensuring style diversity due to restricted style sources, limiting the utilization of the potential style space. To address this, we propose a straightforward yet effective style conversion and generation module integrated into the UNet model. This module transfers diverse yet plausible style features to the original training data at the feature-level space, ensuring that generated styles align closely with the original data. Our method demonstrates superior performance in single-domain generalization tasks across five datasets compared to prior methods.

Funder

Gachon University

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3