Pyrolysis of Polystyrene Waste: A Review

Author:

Maafa Ibrahim

Abstract

The manufacturing of polystyrene around the globe has escalated in the past years due to its huge applications in various areas. The perpetual market needs of polystyrene led the polystyrene wastes accretion in the landfill causing environmental deterioration. The soaring need for polystyrene also led to the exhaustion of petroleum, a non-renewable energy source, as polystyrene is a petroleum-derived product. Researchers from around the world have discovered a few techniques to take care of the polystyrene scraps, namely recycling and energy recovery techniques. Nevertheless, there are demerits involved with recycling techniques, such as they call for huge labor expenses in the separation process and cause water pollution, thereby decreasing the process sustainability. Owing to these demerits, the researchers have focused their attention on the energy recovery technique. Since petroleum is the main ingredient of polystyrene synthesis, the restoration of liquid oil from polystyrene via the pyrolysis method is a promising technique as the recovered oil has greater calorific value as compared to commercially available fuel. The present paper surveys the pyrolysis technique for polystyrene and the important process parameters that control the end product, like oil, gas, and char. The chief process parameters that are discussed in this review paper include the type of reactors, temperature, residence time, pressure, catalyst types, type of fluidizing gases, and their flow rate. A more recent technique of utilizing a solvent to perform pyrolysis and the effect of various process conditions on the product yield have been discussed. Apart from this, various outlooks to optimize the liquid oil recovery from polystyrene are also reviewed.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference119 articles.

1. Production, use, and fate of all plastics ever made

2. Euractivhttps://www.euractiv.com/

3. An Analysis of European Plastics Production, Demand and Waste Data,2015

4. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3