Enhanced Cytotoxic Activity of Docetaxel-Loaded Silk Fibroin Nanoparticles against Breast Cancer Cells

Author:

Al Saqr Ahmed,Wani Shahid Ud DinORCID,Gangadharappa H. V.ORCID,Aldawsari Mohammed F.ORCID,Khafagy El-SayedORCID,Lila Amr S. AbuORCID

Abstract

Despite decades of research, breast cancer therapy remains a great challenge. Docetaxel is an antimicrotubule agent that is effectively used for the treatment of breast cancer. However, its clinical use is significantly hampered by its low water solubility and systemic toxicity. The current study was designed to prepare docetaxel (DXL)-loaded silk-fibroin-based nanoparticles (SF-NPs) and to screen their potential antitumor activity against breast cancer cell lines. DXL-loaded SF-NPs were prepared using a nanoprecipitation technique and were evaluated for particle size, zeta potential, entrapment efficiency, and in vitro release profile. In addition, DXL-loaded SF-NPs were screened for in vitro cytotoxicity, cellular uptake, and apoptotic potential against MCF-7 and MDA-MB-231 breast cancer cell lines. The prepared DXL-loaded SF-NPs were 178 to 198 nm in diameter with a net negative surface charge and entrapment efficiency ranging from 56% to 72%. In vitro release studies exhibited a biphasic release profile of DXL from SF-NPs with sustained drug release for 72 h. In vitro cell studies revealed that entrapment of DXL within SF-NPs significantly improved cytotoxic potential against breast cancer cell lines, compared to the free drug, and enhanced cellular uptake of DXL by breast cancer cells. Furthermore, the accumulation in the G2/M phase was significantly higher in cells treated with DXL-loaded SF-NPs than in cells treated with free DXL. Collectively, the superior antitumor activities of DXL-loaded SF-NPs against breast cancer cells, compared to free DXL, could be ascribed to improved apoptosis and cell cycle arrest. Our results highlighted the feasibility of using silk fibroin nanoparticles as a nontoxic biocompatible delivery vehicle for enhanced therapeutic outcomes in breast cancer.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3