Enhanced Microstructure and Wear Resistance of Ti–6Al–4V Alloy with Vanadium Carbide Coating via Directed Energy Deposition

Author:

Ko Ui Jun1ORCID,Jung Ju Hyeong1,Kang Jung Hyun1,Choi Kyunsuk2ORCID,Kim Jeoung Han1ORCID

Affiliation:

1. Department of Materials Science & Engineering, Hanbat National University, Daejeon 34158, Republic of Korea

2. Department of Industry University Convergence, Hanbat National University, Daejeon 34158, Republic of Korea

Abstract

Ti–6Al–4V alloys are known for their suboptimal tribological properties and are often challenged by durability issues under severe wear conditions. This study was conducted to enhance the alloy’s wear resistance by forming a hardened surface layer. Utilizing directed energy deposition (DED) additive manufacturing with a diode laser, vanadium carbide particles were successfully integrated onto a Ti–6Al–4V substrate. This approach deviates from traditional surface enhancement techniques like surface hardening and cladding, as it employs DED additive manufacturing under parameters akin to those used in standard Ti–6Al–4V production. The formed vanadium carbide layer achieved a remarkable thickness of over 400 µm and a Vickers hardness surpassing 1500 HV. Pin-on-disk test results further corroborated the enhanced surface wear properties of the Ti–6Al–4V alloy following the additive-manufacturing process. These findings suggest that employing vanadium carbide additive manufacturing, under conditions similar to the conventional DED process with a diode laser, significantly improves the surface wear properties of Ti–6Al–4V in metal 3D-printing applications.

Funder

Ministry of Trade, Industry & Energy (MOTIE), Korea

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3