Experimental and Numerical Analysis of Low-Velocity Impact of Carbon Fibre-Based Non-Crimp Fabric Reinforced Thermoplastic Composites

Author:

Mohsin Muhammad Ameerul AtrashORCID,Iannucci Lorenzo,Greenhalgh Emile S.ORCID

Abstract

There has been a lot of interest in understanding the low-velocity impact (LVI) response of thermoplastic composites. However, little research has focussed on studying the impact behaviour of non-crimp fabric (NCF)-based fibre reinforced thermoplastic composites. The purpose of this study was to evaluate the LVI responses of two types of non-crimp fabric (NCF) carbon fibre reinforced thermoplastic laminated composites that have been considered attractive in the automotive and aerospace industry: (i) T700/polyamide 6.6 (PA6.6) and (ii) T700/polyphenylene sulphide (PPS). Each carbon/thermoplastic type was impacted at three different energy levels (40, 100 and 160 J), which were determined to achieve three degrees of penetrability, i.e., no penetration, partial penetration and full penetration, respectively. Two distinct non-destructive evaluation (NDE) techniques ((i) ultrasonic C-scanning and (ii) X-ray tomography) were used to assess the extent of damage after impact. The laminated composite plates were subjected to an out-of-plane, localised impact using an INSTRON® drop-weight tower with a hemispherical impactor measuring 16 mm in diameter. The time histories of force, deflection and velocity are reported and discussed. A nonlinear finite element model of the LVI phenomenon was developed using a finite element (FE) solver LS-DYNA® and validated against the experimental observations. The extent of damage observed and level of impact energy absorption calculated on both the experiment and FE analysis are compared and discussed.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference41 articles.

1. The Low-Velocity Impact Damage Resistance of the Composite Structures—A Review;Ahmed;Rev. Adv. Mater. Sci.,2015

2. Penetration impact resistance of hybrid composites based on commingled yarn fabrics

3. The high velocity impact response of composite and FML-reinforced sandwich structures

4. Impact Testing of Advanced Composites;Duell,2004

5. UK-DATACOMP|CIChttp://the-cic.org.uk/uk-datacomp

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3