Hierarchical Porous MIL-101(Cr) Solid Acid-Catalyzed Production of Value-Added Acetals from Biomass-Derived Furfural

Author:

Liu Shengqi,Meng Ye,Li HuORCID,Yang SongORCID

Abstract

Considering economic and environmental impacts, catalytic biomass conversion to valuable compounds has attracted more and more attention. Of particular interest is furfural, a versatile biorefinery platform molecule used as a feedstock for the production of fuels and fine chemicals. In this study, the Cr-based metal-organic frameworks (MOFs) MIL-101 were modified by chlorosulfonic acid, and MIL-101 was changed into a hierarchical MOF structure with smaller particles and lower particle crystallinity by CTAB, which significantly improved the acidic sites of the MOFs. The original and modified MIL-101(Cr) catalysts were characterized by XRD, N2 adsorption-desorption, SEM, TEM, and FT-IR. The effects of different catalysts, reaction temperature, catalyst amount, and alcohol type on the reaction were studied. Under the action of the MOFs catalyst, a new mild route for the condensation of furfural with various alkyl alcohols to the biofuel molecules (acetals) was proposed. The conversion route includes the conversion of furfural up to 91% yield of acetal could be obtained within 1 h solvent-free and in room-temperature reaction conditions. The sulfonic acid-functionalized MIL-101(Cr) is easy to recover and reuse, and can still maintain good catalytic activity after ten runs.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3