FFF 3D Printing in Electronic Applications: Dielectric and Thermal Properties of Selected Polymers

Author:

Kalaš DavidORCID,Šíma KarelORCID,Kadlec PetrORCID,Polanský RadekORCID,Soukup RadekORCID,Řeboun Jan,Hamáček Aleš

Abstract

The present study is a focused and comprehensive analysis of the dielectric and thermal properties of twenty-four 3D printed polymers suitable for fused filament fabrication (FFF) in electronic applications. The selected polymers include various thermoplastic elastomers, such as thermoplastics based on polycarbonate (PC), polyethylene terephthalate glycol (PETG), and acrylonitrile butadiene styrene (ABS-T). Their overall thermal behavior, including oxidation stability, glass transition, and melting temperature, was explored using simultaneous thermal analysis (STA) and differential scanning calorimetry (DSC). Considering their intended usage in electronic applications, the dielectric strength (Ep) and surface/volume resistivity (ρs/ρv) were comprehensively tested according to IEC 60243-1 and IEC 62631-3, respectively. The values of the dielectric constant (ε’) and loss factor (ε”) were also determined by broadband dielectric spectroscopy (BDS). While, on the one hand, exceptional dielectric properties were observed for some thermoplastic elastomers, the materials based on PCs, on the other hand, stood out from the others due to their high oxidation stability and above average dielectric properties. The low-cost materials based on PETG or ABS-T did not achieve thermal properties similar to those of the other tested polymers; nevertheless, considering the very reasonable price of these polymers, the obtained dielectric properties are promising for undemanding electronic applications.

Funder

Technology Agency of the Czech Republic

Student Grant Agency of the University of West Bohemia in Pilsen

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3