Abstract
Volatile organic compounds pollute the environment and pose a serious threat to human health due to their toxicity, mutagenicity, and carcinogenicity. In this context, it is highly desirable to fabricate high-performance poly (dimethylsiloxane) (PDMS) composites to remove organic solvents from the environment using a simple technique. Therefore, in the present study, Fe-PDMS composites were fabricated using a technique based on magnetic induction heating with iron particles serving as a self-heating agent. Under an alternating magnetic field, the iron particles served as a thermal source that assisted in the progression of PDMS crosslinking. The influence of self-heating iron on the properties of the fabricated Fe-PDMS composites was also investigated. The hydrosilation reaction occurring during the crosslinking process was controlled using FT-IR. The heating efficiency of PDMS 1, PDMS 2, and PDMS 3 was studied as the function of induction time (0–5 min) and the function of iron content (0%, 1%, and 30% wt.%). The results revealed that the mechanical properties of the PDMS 2 composite were enhanced compared to those of the PDMS 1 and PDMS 3 composites. The mechanical properties of PDMS 3 were the least efficient due to cluster formation. PDMS 3 exhibited the highest thermal stability among all composites. Furthermore, the swelling behavior of different materials in various organic solvents was studied. PDMS was observed to swell to the greatest extent in chloroform, while swelling to a large extent was observed in toluene, pentane, and petroleum ether. PDMS swelling was the least in n-butanol. The elastomeric behavior of crosslinked PDMS, together with its magnetic character, produces stimuli-responsive magneto-rheological composites, which are quite efficient and suitable for applications involving the removal of organic solvents.
Subject
Polymers and Plastics,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献