3D-Printed Graphene-Based Bow-Tie Microstrip Antenna Design and Analysis for Ultra-Wideband Applications

Author:

Avşar Aydın Emine

Abstract

In this study, the effects of graphene and design differences on bow-tie microstrip antenna performance and bandwidth improvement were investigated both with simulation and experiments. In addition, the conductivity of graphene can be dynamically tuned by changing its chemical potential. The numerical calculations of the proposed antennas at 2–10 GHz were carried out using the finite integration technique in the CST Microwave Studio program. Thus, three bow-tie microstrip antennas with different antenna parameters were designed. Unlike traditional production techniques, due to its cost-effectiveness and easy production, antennas were produced using 3D printing, and then measurements were conducted. A very good match was observed between the simulation and the measurement results. The performance of each antenna was analyzed, and then, the effects of antenna sizes and different chemical potentials on antenna performance were investigated and discussed. The results show that the bow-tie antenna with a slot, which is one of the new advantages of this study, provides a good match and that it has an ultra-bandwidth of 18 GHz in the frequency range of 2 to 20 GHz for ultra-wideband applications. The obtained return loss of −10 dB throughout the applied frequency shows that the designed antennas are useful. In addition, the proposed antennas have an average gain of 9 dBi. This study will be a guide for microstrip antennas based on the desired applications by changing the size of the slots and chemical potential in the conductive parts in the design.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3