Temperature Dependence of Conformational Relaxation of Poly(ethylene oxide) Melts

Author:

Kim Hye Sol,Kwon Taejin,Park Chung Bin,Sung Bong June

Abstract

The time-temperature superposition (TTS) principle, employed extensively for the analysis of polymer dynamics, is based on the assumption that the different normal modes of polymer chains would experience identical temperature dependence. We aim to test the critical assumption for TTS principle by investigating poly(ethylene oxide) (PEO) melts, which have been considered excellent solid polyelectrolytes. In this work, we perform all-atom molecular dynamics simulations up to 300 ns at a range of temperatures for PEO melts. We find from our simulations that the conformations of strands of PEO chains in melts show ideal chain statistics when the strand consists of at least 10 monomers. At the temperature range of T= 400 to 300 K, the mean-square displacements (⟨Δr2(t)⟩) of the centers of mass of chains enter the Fickian regime, i.e., ⟨Δr2(t)⟩∼t1. On the other hand, ⟨Δr2(t)⟩ of the monomers of the chains scales as ⟨Δr2(t)⟩∼t1/2 at intermediate time scales as expected for the Rouse model. We investigate various relaxation modes of the polymer chains and their relaxation times (τn), by calculating for each strand of n monomers. Interestingly, different normal modes of the PEO chains experience identical temperature dependence, thus indicating that the TTS principle would hold for the given temperature range.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference59 articles.

1. Time-temperature superposition and linear viscoelasticity of polybutadienes

2. Time–temperature superposition for polymeric blends;Van Gurp;Rheol. Bull.,1998

3. Time-temperature superposition method for glass transition temperature of plastic materials

4. Time-Temperature Superposition in Viscous Liquids

5. Time–temperature superposition—A users guide;Dealy;Rheol. Bull.,2009

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3