Deformation and Failure Mechanism of Particulate Filled and Short Fiber Reinforced Thermoplastics: Detection and Analysis by Acoustic Emission Testing

Author:

Ferdinánd Milán,Várdai Róbert,Móczó JánosORCID,Pukánszky Béla

Abstract

Acoustic emission, the detection of signals during deformation, is a frequently used method for the study of local deformation processes occurring in heterogeneous polymer systems. Most of these processes result in the evolution of elastic waves which can be detected by appropriate sensors. The analysis of several parameters characterizing the waves offers valuable information about the possible deformation mechanism. The acoustic emission testing of composites may yield very different number of signals from a few hundred to more than 100,000. This latter was proved to be affected mainly by particle size, interfacial adhesion and composition, but other factors, such as matrix modulus and specimen size, also influence it. Local deformation processes are claimed to have a strong effect on macroscopic properties. Indeed, a close correlation was found between the initiation stress of the dominating particle related process derived from acoustic emission testing and the tensile strength in both polypropylene (PP) and poly(lactic acid) (PLA) composites. However, in polyamide (PA)-based heterogeneous polymer systems, deformations related to the matrix dominated composite properties. Besides forecasting failure, the method makes possible the determination of the inherent strength of lignocellulosic fibers being around 40 MPa as well as the quantitative estimation of adhesion strength for composites in which interactions are created by mechanisms other than secondary forces. The proposed approach based on acoustic emission testing proved that in PP/CaCO3 composites, the strength of adhesion can be increased by ten times from about 100 mJ/m2 to almost 1000 mJ/m2 in the presence of a functionalized polymer.

Funder

Hungarian Scientific Research Fund

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3