Cu-Doped Sb2Se3 Thin-Film Solar Cells Based on Hybrid Pulsed Electron Deposition/Radio Frequency Magnetron Sputtering Growth Techniques

Author:

Jakomin Roberto1,Rampino Stefano2ORCID,Spaggiari Giulia23ORCID,Casappa Michele24ORCID,Trevisi Giovanna2ORCID,Del Canale Elena23,Gombia Enos2,Bronzoni Matteo2,Sossoe Kodjo Kekeli5,Mezzadri Francesco24ORCID,Pattini Francesco2

Affiliation:

1. Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25240-005, Brazil

2. Consiglio Nazionale delle Ricerche, IMEM Institute, 43124 Parma, Italy

3. Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/a (Campus), 43124 Parma, Italy

4. Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 15/a (Campus), 43124 Parma, Italy

5. Centre d′Excellence Régional pour la Maîtrise de l′Electricité (CERME), University of Lomé, Lomé 01 BP 1515, Togo

Abstract

In recent years, research attention has increasingly focused on thin-film photovoltaics utilizing Sb2Se3 as an ideal absorber layer. This compound is favored due to its abundance, non-toxic nature, long-term stability, and the potential to employ various cost-effective and scalable vapor deposition (PVD) routes. On the other hand, improving passivation, surface treatment and p-type carrier concentration is essential for developing high-performance and commercially viable Sb2Se3 solar cells. In this study, Cu-doped Sb2Se3 solar devices were fabricated using two distinct PVD techniques, pulsed electron deposition (PED) and radio frequency magnetron sputtering (RFMS). Furthermore, 5%Cu:Sb2Se3 films grown via PED exhibited high open-circuit voltages (VOC) of around 400 mV but very low short-circuit current densities (JSC). Conversely, RFMS-grown Sb2Se3 films resulted in low VOC values of around 300 mV and higher JSC. To enhance the photocurrent, we employed strategies involving a thin NaF layer to introduce controlled local doping at the back interface and a bilayer p-doped region grown sequentially using PED and RFMS. The optimized Sb2Se3 bilayer solar cell achieved a maximum efficiency of 5.25%.

Funder

Italian Ministry of the Environment and Energy Security

Italian Ministry of University and Research

European Union—NextGenerationEU

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3