Affiliation:
1. Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
2. CJ International Trading Co., Ltd., Shanghai 201107, China
Abstract
This experiment investigated the effects of L-Methionine (L-Met) on growth performance, Met-metabolizing enzyme activity, feather traits, and small intestinal morphological characteristics, and compared these with DL-Methionine (DL-Met) for medium-growing, yellow-feathered broilers during the starter phase. Furthermore, the aim was to provide recommendations for the appropriate dietary Met levels in feed. A total of 1584 1-d broilers were randomly divided into 11 treatment groups with six replicates of 24 birds each: basal diet (CON, Met 0.28%), basal diet + L-Met (0.04%, 0.08%, 0.12%, 0.16%, 0.20%), and basal diet + DL-Met (0.04%, 0.08%, 0.12%, 0.16%, 0.20%). The total trial period was 30 days. Compared with broilers fed the basal diet, those fed 0.04 to 0.20% supplemental Met had higher final body weight (FBW), average daily feed intake (ADFI), average daily gain (ADG), and lower feed-to-gain ratio (F: G) (p < 0.05). Compared with DL-Met groups, the L-Met group had higher FBW and ADG (p < 0.05). The relative bioavailability (RBV) of L-Met in ADG of 1–30 d was 142.5%. Chicks fed diets supplemented with L-Met had longer fourth primary feather lengths compared to birds fed the control and diets supplemented with DL-Met (p < 0.05). Compared to the control, birds supplemented with DL-Met or L-Met had an increased moulting score (p ≤ 0.05). Chicks fed diets supplemented with L-Met had lower activities of methionine adenosyl transferase (MAT) compared to those fed the basal diet or supplemented with DL-Met (p < 0.05). Chicks supplemented with either DL-Met or L-Met had higher activities of cystathionine β-synthase (CBS) than those fed the basal diet (p < 0.05). Compared with the control, chicks fed diets supplemented with either DL-Met or L-Met had an enhanced level of albumin in plasma (p < 0.05). There were no obvious differences in the plasma content of uric acid and total protein among the treatments (p > 0.05). Chicks fed diets supplemented with either DL-Met or L-Met had higher villus height and V/C in the duodenal than chicks fed the basal diet (p < 0.05). The jejunum morphology was not affected by either L-Met or DL-Met supplementation (p > 0.05). Therefore, dietary supplementation with DL-Met or L-Met improved the growth performance, feather traits, and intestinal morphological characteristics of medium-growing, yellow-feathered broiler chickens aged 1 to 30 d by decreasing the enzyme activities of Met methylation (MAT) and increasing the enzyme activities of the sulfur transfer pathway (CBS), and supplementation with L-Met showed a better improvement compared with DL-Met. The relative efficacy of L-Met to DL-Met was 142.5% for ADG of yellow-feathered broilers. The appropriate Met levels for medium-growing, yellow-feathered broilers are between 0.36~0.38% (supplementation with DL-Met) or 0.32~0.33% (supplementation with L-Met) when based on ADG and feed-to-gain ratio.
Funder
National Key R&D Project
China Agricultural Research System of MOF and MARA
the Natural Science Foundation from Guangdong Province
the Science and Technology Plan Project of Guangzhou
the Introduction of Talents Program from Guangdong Academy of Agricultural Sciences
the Science and Technology Program of Guangdong Academy of Agricultural Sciences
the Guiding Agreement of Young Scholar from Guangdong Academy of Agricultural Sciences